
CCLRC / Rutherford Appleton Laboratory SC/4.4
Particle Physics & Astronomy Research Council
Starlink Project
Starlink Cookbook 4.4

Malcolm J. Currie
2006 November 26

C-shell Cookbook

Version 1.3

Abstract

This cookbook describes the fundamentals of writing scripts using the UNIX C shell. It shows
how to combine Starlink and private applications with shell commands and constructs to create
powerful and time-saving tools for performing repetitive jobs, creating data-processing pipelines,
and encapsulating useful recipes. The cookbook aims to give practical and reassuring examples
to at least get you started without having to consult a UNIX manual. However, it does not
offer a comprehensive description of C-shell syntax to prevent you from being overwhelmed or
intimidated. The topics covered are: how to run a script, defining shell variables, prompting,
arithmetic and string processing, passing information between Starlink applications, obtaining
dataset attributes and FITS header information, processing multiple files and filename modifi-
cation, command-line arguments and options, and loops. There is also a glossary.

ii SC/4.4

Contents

1 Introduction 1

2 Further Reading 1

3 How to use this manual 2

4 Conventions 2

5 Running a script 3
5.1 Shell selection . 3

5.2 Making a script executable . 3

5.3 Executing a script by name . 3
5.4 Using aliases to run a script . 4

5.5 Removing aliases . 4
5.6 Executing a script in the current process . 5

5.7 Package aliases . 5

6 Some simple examples 6

7 Shell Variables 8
7.1 Assigning scalar values . 8

7.2 Assigning arrays . 8
7.3 Using the values of variables . 9

7.4 Special characters . 10
7.5 Prompting . 11

7.6 Script arguments and other special variables . 11
7.7 Predefined variables . 12

8 Executing a Starlink Application 13

8.1 Parameter files and the graphics database . 14
8.2 How to test whether or not a Starlink task has failed 14

9 Passing information between Starlink applications 16

9.1 Parsing text output . 16
9.2 Via Parameters . 16

10 Arithmetic 17

10.1 Integer . 17
10.2 Logical . 18

10.3 Floating Point . 20
10.4 Intrinsic Functions . 22

11 String Processing 24

11.1 String concatenation . 24
11.2 Obtain the length of a string . 25

11.3 Find the position of a substring . 25
11.4 Extracting a substring . 26

11.5 Split a string into an array . 26

SC/4.4 iii

11.6 Changing case . 27

11.7 String substitution . 27

11.8 Formatted Printing . 27

12 Dealing with Files 30
12.1 Extracting parts of filenames . 30

12.2 Process a Series of Files . 31

12.2.1 NDFs . 31

12.2.2 Wildcarded lists of files . 31
12.2.3 Exclude the .sdf for NDFs . 32

12.2.4 Examine a series of NDFs . 33

12.3 Filename modification . 33
12.3.1 Appending to the input filename . 34

12.3.2 Appending a counter to the input filename 34

12.3.3 Appending to the input filename . 34

12.4 File operators . 35
12.5 Creating text files . 36

12.5.1 Writing a script within a script . 37

12.6 Reading lines from a text file . 37

12.7 Reading tabular data . 38
12.7.1 Finding the number of fields . 38

12.7.2 Extracting columns . 38

12.7.3 Selecting a range . 39
12.7.4 Choosing columns by name . 39

12.8 Reading from dynamic text files . 40

12.9 Discarding text output . 40

12.10Obtaining dataset attributes . 41
12.10.1 Obtaining dataset shape . 41

12.10.2 Available attributes . 41

12.10.3 Does the dataset have variance/quality/axis/history information? 44

12.10.4 Testing for bad pixels . 44
12.10.5 Testing for a spectral dataset . 45

12.11FITS Headers . 46

12.11.1 Testing for the existence of a FITS header value 46

12.11.2 Reading a FITS header value . 46
12.11.3 Writing or modifying a FITS header value 46

12.12Accessing other objects . 47

12.13Defining NDF sections with variables . 47

13 Loop a specified number of times 48

14 UNIX-style options 49

15 Debugging scripts 51

16 Breaking-in 51

17 Longer recipes 52

17.1 Recipe for masking and background-fitting . 52

iv SC/4.4

18 Glossary 54

SC/4.4 1

1 Introduction

Scripting is a powerful and time-saving tool for performing repetitive jobs, creating data-
processing pipelines, and encapsulating useful recipes. A script is a text file containing a set
of shell commands and constructs that perform a routine task. The former can include UNIX
commands like mv, cd, awk, sed; other scripts; and private and Starlink applications. You can
create and modify scripts with a text editor.

Although UNIX purists recommend the Bourne or bash shell for scripts and indeed some con-
sider C-shell programming harmful, many scientists who are occasional programmers find the
familiar C-like syntax more approachable and easier to learn for scripting. Whereas young Turks
would advocate the increasingly popular perl and Python languages, a 1996 survey of Starlink
users placed C-shell scripting near the head of required cookbooks. In addition most Starlink
commands are available as C-shell aliases. This cookbook applies to both the C-shell csh and
its variants like the tc-shell tcsh.

This manual illustrates some relevant techniques for creating C-shell scripts that combine Star-
link software to improve your productivity, without you having to read a UNIX manual. It
aims to give practical and reassuring examples to at least get you started. It does not offer a
comprehensive description of C-shell syntax and facilities.

This is not like other cookbooks in the Starlink series as the possible recipes are limitless. Instead
of concentrating on recipes, it therefore focuses on the various ingredients you may need for your
own creations. Thus it has a tutorial style more akin to a guide. However, it has been structured
with the aim of letting you dip in to find the desired ingredient.

The author welcomes your comments. If you have “How do I do . . . in the C-shell” type questions,
or suggestions for further recipes and ingredients, please contact the Starlink Software Librar-
ian (ussc@star.rl.ac.uk) or the author (mjc@star.rl.ac.uk), so that important techniques
omitted from this version may be included in future editions.

2 Further Reading

If you want a comprehensive description of C-shell syntax and facilities; check the man pages
for csh. Books exclusively on the C-shell are not as commonplace as you might expect; one
such is Teach Yourself the Unix C shell in 14 days by David Ennis & James C. Armstrong
(SAMS Publishing, Indianapolis, 1994). While there are plenty of UNIX books, they tend to
give spartan coverage of the C-shell, often concentrating on the interactive aspects; in many the
examples are sparse. One that bucks the trend is UNIX Shells by Example by Ellie Quigley
(Prentice-Hall, New Jersey, 1997). This has numerous examples, where the function of each line
is explained. C-shell is included, and there are chapters on the tools of the trade like awk and
regular expressions. The chapter entitled Shell Programming in UNIX for VMS Users by Philip
E. Bourne (Digital Press, 1990) is well worth a read, especially for those of you who developed
command procedures in Starlink’s VMS era, and want to convert them to UNIX scripts. Chapter
49 of UNIX Power Tools by Jerry Peek, Tim O’Reilly, & Mike Loukides (O’Reilly & Associates,
1993) has useful summaries and describes some problems with the C-shell.

2 SC/4.4

3 How to use this manual

It is not necessary to read this manual from cover to cover. Indeed some of it will be repetitive
if you do. That’s deliberate so that once you have the basics, you can then look up a particular
ingredient without having to read lots of other parts of the cookbook.

Before you write any scripts you should look at Sections 5 to 8 (except perhaps 5.7).

4 Conventions

verbatim Commands you enter, filenames, parameters values you supply to scripts
or tasks appear in teletype fount.

command The names of UNIX or Starlink commands appear in bold.
term Special terms explained in the glossary appear in the sans-serif fount.

Commands to be entered from the terminal are prefixed with a % prompt string. You should
not type the %.

SC/4.4 3

5 Running a script

Unfortunately, we must start with some boring, but important technical stuff. This will tell you
how to run your script using the C-shell. The stages are to select the shell, give execute access
to the script, and then actually invoke the script using one of three ways.

5.1 Shell selection

The first line of your script tells UNIX which shell you want to use. The following selects the
C-shell.

#!/bin/csh

Somewhat perversely, the # is actually the comment character. That’s UNIX for you. However,
its presence alone starting the first line will normally be sufficient to run a script in the C shell.

Most of the examples in this document are script excerpts, and so do not include the #!/bin/csh.

5.2 Making a script executable

If you want to run your script by name or with an alias (see below), you must make your script
executable like this

% chmod +x myscript

where myscript is your C-shell script. Remember that the % is a convention for the shell prompt;
you do not type it yourself. You can edit the script without having to make the file executable
again.

5.3 Executing a script by name

Once your script has execute privilege, thereafter you can run it like this:

% ./myscript

or if it is situated in directory /home/user1/dro/bin say

% /home/user1/dro/bin/myscript

would execute your script. This is long-winded if you want to run the the script frequently. To
omit the directory path you need to add the current (.) or better, the specific directory to your
PATH environment variable.

4 SC/4.4

5.4 Using aliases to run a script

The second method is to define an alias. An alias is a shorthand for a long command to save
typing. So in fact this method is just a variant of executing a script by name.

% alias myscript /home/user1/dro/bin/myscript

Thereafter you would only enter myscript to run your script. Now this alias only applies to your
current process. Even child processes derived from the current process will not inherit the alias.
The way to make an alias global, so each new C-shell process recognises the alias, is to define
the alias in your $HOME/.cshrc file. This file in your login directory defines the ‘environment’
for each C-shell process.

Here is a simple .cshrc file. It sets some global variables: noclobber prevents accidentally
overwriting an existing file and history sets the number of previous commands you can recall.
It defines three aliases. The first lets you browse through a directory listing. The second
reformats the output from df on Digital UNIX so that lines do not wrap. The third lists the
largest 20 files in a directory. Finally .cshrc runs the script /star/etc/cshrc to define Starlink
aliases (the source command is explained in Section 5.6).

set noclobber

set history = 50

alias dsd ’ls -l \!* | more’

alias dff "df \!* |awk \

’{printf("\"%-20.20s%9.8s%9.8s%9.8s%9.8s %s\\n\",’$1,$2,$3,$4,$5,$6)}’ "’"

alias big20 ’ls -l | sort -k 5 | tail -n 20’

source /star/etc/cshrc

5.5 Removing aliases

There are two methods. One is permanent; the other overrides an alias for a single command.
To remove an alias permanently use the unalias command. This accepts *?[] wildcards to

match the defined aliases.

Removes aliases called:

% unalias myscript # myscript

% unalias kap_* # kap_ followed by zero or more characters

% unalias compres? # compres followed by a single character

% unalias [f-hz][2-5] # One of f, g, h, or z then an integer

between 2 and 5 inclusive

To override an alias, precede the alias with backslash. So suppose you have an alias to prevent
you accidently removing a file as shown below.

% alias rm rm -i

In a script where you know that you want to remove a file, you don’t want the script to seek
confirmation. So suppose you want to delete file myfile, then you would have a line like

\rm myfile

in your script.

SC/4.4 5

5.6 Executing a script in the current process

The final option is to source your script so that it runs in the current process. The benefit of
this technique is that any aliases defined in the current process will be known to your script.
For example,

% source myscript

runs myscript. Any aliases created in myscript will be available to the current process, unlike
invocation by name. To save typing you can define an alias to source a script. See the next
section on package aliases for an example.

5.7 Package aliases

While convenient, the creation of aliases in your .cshrc file does have a drawback: if you
define many aliases in the .cshrc file, it will decelerate process activation. One way around
that is to define a few aliases that run other scripts, each of which in turn define many related
aliases. Thus you only create the definitions when they are required. This is how most Starlink
packages define their commands. Here is an example. Suppose you had a package or a set of
related commands called COSMIC installed in directory /home/user2/dro/cosmic, you would
first place the following line in your .cshrc file.

alias cosmic ‘source /home/user2/dro/cosmic/cosmic.csh‘

The left quotes mean execute the command between them. So when you enter

% cosmic

the script /home/user2/dro/cosmic/cosmic.csh is run. This file might look like the following.

#!/bin/csh

alias abund /home/user2/dro/cosmic/abundance

alias filter ‘source /home/user1/abc/bin/garbage.csh‘

alias kcorr /home/user2/dro/cosmic/k-correction.csh

alias radial /home/user2/drmoan/noddy/radial

alias seeing $KAPPA_DIR/psf isize=21 psf=psf21

alias zcol kcorr bands=UJR noevol

6 SC/4.4

6 Some simple examples

Let’s start with a few elementary scripts to show that script writing isn’t difficult, and to
illustrate some syntax and constructs.

Suppose that we have an editor such as jed which retains a copy of the previous version of a
file by appending ∼ to the filename. If at some time we realise that we really want the former
version and to erase the new one we could have a script called restore that would perform the
operation for an arbitrary file. It might look something like this.

#!/bin/csh

rm $1

mv $1~ $1

The first line demands that the C-shell be used. The $1 represents the first argument supplied
on the command line. (There is more on this in Section 7.6.) If the command restore runs the
script, then entering

% restore splat.f

would remove splat.f and replace it with splat.f∼.

The above script makes some assumptions. First it does not check whether or not the files exist.
Let’s correct that.

#!/bin/csh

if (-e $1 && -e $1~) then

rm $1

mv $1~ $1

endif

Here we have introduced the if...then...endif construct. When the expression inside the paren-
theses is true, the following statements are executed until there is an else or endif statement.
In this case -e $1 && -e $1 is true only when both files exist. The -e is one of eight file

operators for such things as file access and type, and && is a logical AND.

The second assumption in restore is that you’ll always remember to supply a file name.

#!/bin/csh

if ($#argv == 0) then

echo Error: no file name supplied

else if (-e $1 && -e $1~) then

rm $1

mv $1~ $1

endif

The script now reports an error message Error: no file name supplied if you forget the
argument. $#argv is the number of arguments supplied on the command line. Also notice the
else if construct. The == tests for equality.

Instead of an error message you could make the script prompt for a filename.

SC/4.4 7

#!/bin/csh

if ($#argv == 0) then

echo -n "The file to restore >"

set file = $<

else

set file = $1

endif

if (-e $file && -e $file~) then

rm $file

mv $file~ $file

else

if (! -e $file) then

echo Error: $file does not exist

endif

if (! -e $file~) then

echo Error: $file~ does not exist

endif

endif

When the number of arguments is zero, this script issues the prompt The file to restore

>. The echo -n prevents a skip to a new line, and so allows you to enter your response after
the prompt string. set file $< equates your response to a shell variable called file. If on
the other hand you gave the filename on the command line set file = $1 assigns that name
to variable file. When we come to use the variable in other commands it is prefixed with a
dollar, meaning “the value of the variable”. Finally, the script now tells you which file or files
are missing. Notice how the variable value can be included in the error message.

For your private scripts you need not be as rigorous as this, and in many cases the simplest
script suffices. If you intend to use a script frequently and/or sharing with colleagues, it’s worth
making a little extra effort such as adding commentary. Comments will help you remember
what a lengthy script does after you’ve not run it for a while. It might seem tedious at the time,
but you will thank yourself when you come to run it after a long interval. Comment lines begin
with #. There are comment examples in some of the longer scripts later in the cookbook.

8 SC/4.4

7 Shell Variables

The shell lets you define variables to perform calculations, and to pass information between
commands and applications. They are either integers or strings, however it is possible to perform
floating-point arithmetic by using certain applications in your script (see Section 10.3). You
don’t need to declare the data type explicitly; the type is determined when you assign a value
to a variable.

Variables are only defined in the current process. If you want global variables, i.e. ones that are
available to all processes, you should assign them in your .cshrc file.

Variable names comprise up to 20 letters, digits, and underscores; and should begin with a letter
or underscore.

7.1 Assigning scalar values

You assign a value to a variable using the set command.

set colour = blue

set title = "Chiaroscuro 1997"

set caption = "The most distant quasar observed is at redshift "

set flux_100 = 1.2345E-09

set n = 42

set _90 = -1

The first four examples assign strings, and the last two assign integer values. Yes the value of
flux_100 is not a real number. Multi-word strings should be enclosed in " quotes. The spaces
around the equals sign are necessary.

You can also remove variables with the unset command. This accepts *?[] wildcards to match

the names of the shell variables.

unset colour

unset iso_* # iso_ followed by zero or more characters

unset flux_1?? # flux_1 followed by any pair of characters

unset [nx-z][0-9]* # One of n, x, y, or z then an integer followed

by zero or more characters

7.2 Assigning arrays

The set command is again used but the elements are space-separated lists enclosed by paren-
theses. Somewhat surprisingly for a shell that mimics C, array elements start at 1, like Fortran.
Here are some illustrations.

set colours = (blue yellow green red pink)

set label = ("Count rate" Frequency "Integration time (sec)")

set prime = (2 3 5 7 11 13 17 19 23)

The first element of colours is "blue", the second is "yellow" and so on. Multi-word ele-
ments must be in " quotes. So the first element of label is "Count rate", and the second is
"Frequency". The seventh element of prime is 17.

SC/4.4 9

7.3 Using the values of variables

To obtain the value of a variable, you prefix the variable’s name with the dollar sign.

set count = 333

echo Number of runs is $count

would write Number of runs is 333 to standard output.

set caption = "The most distant quasar observed is at redshift "

set z = 5.1

echo $caption$z

This will echo The most distant quasar observed is at redshift 5.1.

if ($n > 10) then

mem2d niter=$n out=deconv

display style="’title=Result of deconvolution after $n iterations’" accept

endif

This tests whether the value of variable n is greater than ten, and if it is, executes the statement
within the if. . . endif structure. The value is also passed into an integer parameter of the
application mem2d; and a string parameter of application display, so if n were forty, the
resultant value would be "Result of deconvolution after 40 iterations".

Arithmetic, logical and string operations are presented in Sections 10 and 11.

The values of array elements are selected by appending the element index in brackets. This
would echo to standard output the string Starting search at co-ordinates x=300, y=256.

set coords = (300 256)

echo "Starting search at co-ordinates x=$coords[1], y=$coords[2]."

The following illustrates use of a text array to specify the annotations of a plot created with
application linplot.

set labels = ("Elapsed time" Flux "Light curve of 3C273")

linplot style="’title=$labels[3],Label(1)=$labels[1],Label(2)=$labels[2]’"

There are some shorthands for specifying subsets of an array. The best way to describe them is
through some examples. All the values assume set prime = (2 3 5 7 11 13 17 19 23).

Syntax Meaning Value

$#prime Number of elements of variable prime 9

$prime[*] All elements of variable prime 2 3 5 7 11 13 17 19 23

$prime[$] The last element of variable prime 23

$prime[3-5] The third to fifth elements of variable prime 5 7 11

$prime[8-] The eighth to last elements of variable prime 21 23

10 SC/4.4

Here we bring some of these ingredients together. Suppose we are experimenting trying to find
the most suitable reddish background (palnum=0) colour for image display using the palentry
command from KAPPA. The script below loops using a while...end construct: all the commands
inside the construct are repeated until the condition following the while is satisfied. That might
seem a little odd here as we appear to repeat the same commands ad infinitum because the
number of colours is fixed. That doesn’t happen because of the C-shell shift command. It
discards the first element of an array and reduces the indices of the remaining elements by one,
so the original $colours[2] becomes $colours[1] and so on. This means that the chosen
background colour is always $colours[1]. The shift also decrements the number of colours by
one. So the script changes the background colour and pauses for five seconds for you to consider
the aesthetics.

set colours = (red coral hotpink salmon brown sienna tan)

while ($#colours > 0)

echo "Trying $colours[1]"

palentry palnum=0 colour=$colours[1]

sleep 5

shift colours

end

7.4 Special characters

The shell has a number of special characters otherwise known as metacharacters. These in-
clude wildcard characters such as *?[], single and double quotes, parentheses, and the \ line
continuation.

If you assign a value to a variable or application parameter which includes one or more of these
metacharacters, you need to switch off the special meanings. This operation is called escaping.
Single characters may be escaped with a backslash. For multiple occurrences single quotes ’ ’

will pass the enclosed text verbatim. Double quotes " " do the same as single quotes except
that $, \, and left quote ‘ retain their special meaning.

setlabel label=\"Syrtis Major\" \\

set metacharacters = ’[]()/&><%$|#‘@’’"’

stats europa’(200:299,~120)’

stats europa"(200:299,~$y)"

In the first example the double quotes are part of parameter PLTITL (needed because of the
embedded space) so are escaped individually. On its own \ means continue a line, but for
Starlink tasks it is shorthand for the accept keyword. So we have to tell the shell to treat the
backslash literally by preceding it with backslash!

In the last pair of examples an NDF section (see SUN/95’s chapter called “NDF Sections”) is
specified. As the last contains a variable value to be substituted, the $ retains its normal special
meaning but the parentheses are escaped by surrounding the section in double quotes.

SC/4.4 11

7.5 Prompting

Some scripts might have parameters that cannot be defaulted, and so if their values are not
given on the command line, the script needs to prompt for them.

echo -n "Give the smoothing size"

set size = $<

This will prompt for the parameter and store the entered value into shell variable size.

7.6 Script arguments and other special variables

The C-shell has some special forms of variable. We have seen some already: the $< for prompting,
and how to specify array elements. The remainder largely concern command-line arguments.
Here they are tabulated.

Syntax Meaning

${0} The name of the script being run
$?name Returns 1 if the variable name is defined, or 0 if it is

not defined
$n The value of the nth argument passed to the script
$argv[n] The value of the nth argument passed to the script
$#argv The number of arguments passed to the script
$* All the arguments supplied to the script
$$ Process identification number (useful for making tem-

porary files with unique names)

Thus inside a script, any command-line arguments are accessed as shell variables $1, $2 . . . $#argv.
There is no practical limit to the number of arguments you can supply.

Let’s look at a few examples. Below is a script argex.csh.

#! /bin/csh

echo ${0}

echo "Number of arguments is $#argv"

echo $2

echo $argv[2-3]

echo $argv[$]

exit

Then we run it with four arguments.

% argex.csh "hello world" 42 3.14159 "(300:400,~100)"

argex.csh

Number of arguments is 4

42

42 3.14159

(300:400,~100)

12 SC/4.4

Note that you must enclose any argument passed to a script that contains a space or shell
metacharacter in double quotes (").

You can see an example using $* to process a list of files in Section 12.2.2. There are other
examples of script arguments in Section 14.

7.7 Predefined variables

The C-shell has some predefined variables. We’ve already met argv. The most useful other ones
are listed below.

Shell variable Meaning

cwd Current working directory
home Home directory
path List of directories in which to search for commands
status The status returned by the last command, where 0 means

a successful completion, and a positive integer indicates an
error, the higher the value, the higher the severity.

user Username

So if you wanted to include details of the user and directory at the head of some data-processing
log you might write this in your script.

% echo "Processed by: $user" > logfile

% echo "Directory processed: $path" >> logfile

This writes a heading into file logfile saying who ran the script, and then appends details of
the directory in which processing occurred. Note the different metacharacters, namely > redirects
the output to a file, and >> appends to an existing file.

SC/4.4 13

8 Executing a Starlink Application

Running Starlink tasks from a script is much the same as running them interactively from the
shell prompt. The commands are the same. The difference for shell use is that you should
provide values on the command line (directly or indirectly) for parameters for which you would
normally be prompted. You may need to rehearse the commands interactively to learn what
parameter values are needed. Although there is less typing to use a positional parameter for
the expression, it’s prudent to give full parameter names in scripts. Positions might change and
parameter names are easier to follow. CURSA is an exception. For this package you should list
the answers to prompts in a file as described in Section 12.8.

The script must recognise the package commands. The options for enabling this are described
below. Then you can run Starlink applications from the C-shell script by just issuing the
commands as if you were prompted. You do not prefix them with any special character, like the
% used throughout this manual.

If you already have the commands defined in your current shell, you can source your script so
that it runs in that shell, rather than in a child process derived from it. For instance,

% source myscript test

will run the script called myscript with argument test using the current shell environment; any
package definitions currently defined will be known to your script. This method is only suitable
for quick one-off jobs, as it does rely on the definition aliases being present.

The recommended way is to invoke the startup scripts, such as kappa, ccdpack within the
script. The script will take a little longer to run because of these extra scripts, but it will
be self-contained. To prevent the package startup message appearing you could temporarily
redefine echo as shown here.

alias echo "echo > /dev/null"

kappa

ccdpack

unalias echo

In traditional UNIX style there is a third option: you could add the various directories containing
the executables to your PATH environment variable, however this will not pick up the synonym
commands.

setenv PATH $PATH:/home/user1/dro/bin:/home/user2/drmoan/noddy

As most of the examples in this document are script excerpts, and for reasons of brevity, most
do not define the package commands explicitly.

14 SC/4.4

8.1 Parameter files and the graphics database

If you run simultaneously more than one shell script executing Starlink applications, or run
such a script in the background while you continue an interactive session, you may notice some
strange behaviour with parameters. Starlink applications uses files in the directory $ADAM_USER

to store parameter values. If you don’t tell your script or interactive session where this is located,
tasks will use the same directory. To prevent sharing of the parameter files use the following
tip.

#!/bin/csh

mkdir /user1/dro/vela/junk_$$

setenv ADAM_USER /user1/dro/vela/junk_$$

<main body of the script>

\rm -r /user1/dro/vela/junk_$$

end of script

This creates a temporary directory (/user1/dro/vela/junk_$$) and redefines $ADAM_USER to
point to it. Both exist only while the script runs. The $$ substitutes the process identification
number and so makes a unique name. The backslash in \rm overrides any alias rm.

If you are executing graphics tasks which use the graphics database, you may also need to
redefine $AGI_USER to another directory. Usually, it is satisfactory to equate $AGI_USER to the
$ADAM_USER directory.

8.2 How to test whether or not a Starlink task has failed

In a typical script involving Starlink software, you will invoke several applications. Should any
of them fail, you normally do not want the script to continue, unless an error is sometimes
expected and your shell script can take appropriate action. Either way you want a test that the
application has succeeded.

If you set the ADAM_EXIT environment variable to 1 in your script before calling Starlink
applications then the status variable after each task, will indicate whether or not the task has
failed, where 1 means failure and 0 success.

setenv ADAM_EXIT 1

. . .

. . .

. . .

stats allsky > /dev/null

echo $status

1

stats $KAPPA_DIR/comwest > /dev/null

echo $status

0

The NDF allsky is absent from the current directory, so stats fails, reflected in the value of
status, whereas $KAPPA_DIR/comwest does exist.

Here’s an example in action.

SC/4.4 15

setenv ADAM_EXIT 1

. . .

. . .

. . .

normalize in1=$ndfgen in2=$ndfin out=! device=! > /dev/null

if ($status == 1) then

echo "normalize failed comparing $ndf1 and $ndf2."

goto tidy

else

set offset = ‘parget offset normalize‘

set scale = ‘parget slope normalize‘

endif

. . .

. . .

. . .

tidy:

\rm ${ndfgen}.sdf

The script first switches on the ADAM_EXIT facility. A little later you create an NDF repre-
sented by $ndfgen and then compare it with the input NDF $ndfin using normalize. If the
task fails, you issue an error message and move to a block of code, normally near the end of the
script, where various cleaning operations occur. In this case it removes the generated NDF.

When normalize terminates successfully, the script accesses the output parameters for later
processing with parget. This is explained in Section 9.

16 SC/4.4

9 Passing information between Starlink applications

In scripts you will often want to take some result produced or calculated by one application, and
to pass that information to another. Two techniques are available: piping or output parameters.

9.1 Parsing text output

If the first task prints the required value, it is possible to use one or more of grep, sed, and
awk to locate and isolate the value. For example, to obtain the mean value of a data array you
could have the following lines in your script.

set dummy = ‘stats accept | grep "Pixel mean"‘

set mean = $dummy[4]

The accept keyword tells stats to use the current values for any parameters for which it would
otherwise prompt you. The back quotes (‘ ‘ are important. They tell the shell to execute
the expression they enclose, in this case stats accept | grep "Pixel mean", and assign the
result to variable dummy. So the KAPPA stats task is run on the current dataset, and the output
is passed to grep which searches for the line containing the string Pixel mean, and the mean
value. When you equate a variable to a multi-word string not enclosed in quotes—words being
separated by spaces—the variable becomes an array, whose elements are each assigned to a word.
So in this case the fourth word or element is the mean value.

Besides being inelegant, this method demands that the format and text of the output be fixed.
So it should be avoided where the first task writes results to output parameters.

9.2 Via Parameters

There is a more-robust technique for passing information between Starlink applications; it does
not rely on the formatting of the output. Where an application writes output parameters (other-
wise called results parameters), you may use the parget command of KAPPA to write to standard

output the value or values associated with a parameter for a named application. In a script we
want to assign the value to a shell variable. Let’s see how that compares with obtaining the
same mean value as before.

stats accept > /dev/null

set average = ‘parget mean stats‘

This runs stats, but redirects the output to the null device as the output is not wanted. However,
this does not prevent the output parameter called MEAN from being assigned the mean value.
parget retrieves this value, which is then assigned to variable average. Note that parget
retrieves parameter values for the last invocation of the task. Thus if you wanted the standard
deviation too, you would only need to issue the stats command once (as shown below).

stats \\ > /dev/null

histpeak use=a sfact=0 device=! accept > /dev/null

set mean = ‘parget mean stats‘

set stdev = ‘parget sigma‘

set kurtosis = ‘parget kurt histpeak‘

The kurtosis is obtained via the KURT output parameter of the histpeak command of ESP.

SC/4.4 17

10 Arithmetic

10.1 Integer

You may include integer arithmetic in your scripts. First you must assign a value to each variable
used with the set command.

set count = 1

set data = (10 24 30 17)

set exception = -999

set list

Notice that arrays are defined as spaced-separated values in parentheses. So $data[3] is 30.
You can also set a variable to a null value, such as list above, so that the variable is ready to
be assigned to an expression.

To perform arithmetic the expression is prefixed with the special @ character like this.

@ count = $count + 1

@ count++

Both of these add one to the value of count. Note that the space following the @ and around
the = and + operator are needed. Likewise the examples below both subtract one from the value
of count.

@ count = $count - 1

@ count--

There are several other operators, the most important ones are illustrated below.

@ ratio = $count / 5

@ octrem = $data[2] % 8

@ numelement = $i * $j

The first divides the value of count by 5, rounding down, so if count was 11, ratio would be 2.
The second assigns the remainder of the second element of the array called data after division
by 8. So if data[2] is 30, octrem would be set to 6. Finally numelement is equated to the
product of variables i and j.

The precedence order is * / % followed by + -. If you are in doubt, use parentheses to achieve
the desired order.

18 SC/4.4

10.2 Logical

As variables are either integers or strings, you have to find an alternative route to have logical
variables in your script. One way is to define string values "true" and "false" (or uppercase
equivalents) and test for these. For instance, this checks the value of variable smooth; when it
is true the current dataset is Gaussian smoothed.

if ($smooth == "true") then

gausmooth \\

end

Remember that UNIX is case sensitive, so for instance, TRUE and true are not the same.

Another popular way is to use an integer, which is assigned to 0 for a false value, and 1 for

true. Indeed this is the way logical expressions
are evaluated by the shell. For instance in the
following logical expression

@ x = ($n < 5 || 20 <= $n)

@ y = (!($n < 5 || 20 <= $n))

variable x is 0 (false) when n lies between 5 and
19 inclusive, but is 1 (true) otherwise. Vari-
able y is the negation of x. Note the parenthe-
ses surrounding the logical expressions; they are
needed when an expression contains >, <, |, or
&. A list of the comparison operators is given in
the table to the right.

Here are a few more examples.

Comparison operators

Operator Meaning

== Equal to
! Boolean NOT
!= Not equal
&& Boolean AND
|| Boolean OR
> Greater than
< Less than
>= Greater or equal to
<= Less than or equal to

@ flag = ($name != "abc")

@ integrate = ($flux[4] > 20 && $band != 5)

@ finish = ($finish && ($count > $number || $flag == 0))

The additional parentheses in the expression for finish indicate the evaluation order starting
from the innermost parentheses.

Observant readers will have noticed there are no comparisons involving floating-point numbers.
Although you can do some limited string comparison, another means is needed. One such is to
use the bc calculator.

@ bound = ‘echo "if ($lower > -0.5 && $upper < 0.5) 1" | bc‘

set current = 1.234*10^03

set upper = 1234.56

while (‘echo "if ($current <= $upper) 1" | bc‘)

<statements when $current <= 1234.56>

end

if (‘echo "if (${asp} <= 1.1) 1" | bc‘) then

SC/4.4 19

<statements when $asp is less than or equal to 1.1>

end

The " quoted if statement involving the desired conditional statements is passed to bc. If bc
evaluates the statement true, it returns the 1, which is equivalent to true in C-shell. Note
since the piping into bc is a command, the whole assignment is enclosed in backquotes. In the
first example above, the parentheses are not required, as the > and < are part of a string, not
operators, as far as the shell is concerned. The other two examples show this technique in the
context of a loop control and an if . . . then block.

Note bc uses an arbitrary and controllable precision (cf. the length and scale attributes). Be
aware it also uses a non-standard syntax for scientific notation, as seen defining variable current
above.

The C-shell also offers some operators that test the characteristics of a file, such as file existence.
See Section 12.4 for details.

20 SC/4.4

10.3 Floating Point

The shell cannot perform non-integer arithmetic. Thus you need to employ some other utility.
The standard UNIX bc arbitrary-precision calculator is one. You can also define an algebraic
calculator with awk or gawk as shown below.

small

alias acalc ’ awk "BEGIN{ print \!* }" ’

set z = ‘acalc (sqrt(3.2)+exp(5.4))*4.1/5.2‘

set circle_area = ‘acalc atan2(0,-1)*${rad}*${rad}‘

It is inadvisable to name the alias calc for reasons that will soon be evident. Note that in
expressions you don’t escape the multiplication sign and the expression is not in " quotes. The
small set of about ten mathemetical functions available in awk, including arctangent shown
above that evaluates π, limits what you can achieve. Another option is the KAPPA calc com-
mand. calc has most of the Fortran intrinsic functions available. For the remainder of this
section, we shall just deal with calc.

The calc tool evaluates Fortran-like expressions, sending the result to standard output. So
suppose that we wish to add two real values.

set a = 5.4321

set b = 1.2345

set c = ‘calc $a+$b‘

The variable c takes the value of adding variables a and b. Note the back quotes that cause
calc to be executed.

This is fine if you know that the values will always be positive. However, calc will object if
there are adjacent mathematical operators, such as +- as would happen if b were negative. So
surround variables in parentheses, remembering that the () are metacharacters. See Section 7.4
for more details.

Let’s redo the first example along with a few more to illustrate the recommended syntax. This
time we’ll specify the expression by parameter name rather than position.

set a = 5.4321

set b = -1.2345

set c = ‘calc exp="($a)+($b)"‘ # c = 4.1976

set d = ‘calc exp="’($a - 0.5 * ($b)) / 100 ’"‘ # d = 0.0481485

set e = ‘calc exp="(($a)+($b))**3"‘ # e = 296.2874

set f = ‘calc exp="’($a + ($b)) ** 3’"‘ # f = e

Don’t be intimidated by the surfeit of quotes. The " " are needed because we want the dollar
to retain its variable-substitution meaning. If the expression contains embedded spaces (usually
for clarity) it should be enclosed in single quotes as shown in the assignment to variable f. So
in general the recipe for using calc is

set variable = ‘calc exp="’expression’"‘

SC/4.4 21

Don’t try to escape all the metacharacters individually because it can soon become very messy,
error prone, and hard to follow.

The default precision is single precision. If you need more significant figures then append
prec=_double to the calc command line. The special symbol pi has the value of π. So

set arc = 0.541209

set darc = ‘calc exp=$arc*180.0/pi prec=_double‘

converts an angle 0.541209 radians (stored in arc) to degrees using double-precision arithmetic.

It is sometimes easier to assemble the expression in another variable. Here’s another recipe
which demonstrates this approach. Suppose that you want to find the average median value for
a series of NDFs.

Estimates the median of each sky frame and subtracts it from that image

Enable KAPPA commands. Initialise variables.

kappa > /dev/null

set first = 0

set numndf = 0

Loop for all NDFs

foreach file (*_fl.sdf)

Obtain the NDF’s name.

set file1 = $file:r

Assign the median value of the frame. HISTAT computes the median,

and PARGET extracts it from HISTAT’s MEDIAN output parameter.

Dispose of the HISTAT text output to the null file.

histat $file1 \\ > /dev/null

set median = ‘parget median histat‘

Subtract the median from the input NDF.

csub $file1 $median $file1"_m"

Count the number of NDFs.

@ numndf = $numndf + 1

Form the string to sum the median values using CALC. The shell

only permits integer arithmetic. The expression is different

for the first file.

if ($first == 0) then

set expr = "("$median

set first = 1

Append a plus sign and the next median value.

else

set expr = ‘echo $expr" + "$median‘

endif

end

22 SC/4.4

Complete the expression for evaluating the average of the frame

medians.

set expr = ‘echo $expr") / " $numndf‘

Evaluate the expression and report the result.

echo "Average median is "‘calc $expr‘

The script builds an expression to evaluate the average of the median values. So the first
time it has to write the left parenthesis and first median value into string variable expr,
but otherwise each new value is appended to the expression. Once all the medians are eval-
uated, the remainder of the expression, including division by the number of NDFs is ap-
pended. Finally, the expression is evaluated using calc. If you want to learn more about
the set median = ‘parget median histat‘ command see Section 9.2.

10.4 Intrinsic Functions

If you want to include intrinsic functions, such as logarithms and trigonometric functions in your
calculations, or perhaps you need some function for an integer expression that is not supplied
by the C-shell, such as finding the maximum or the absolute value, calc may be the solution.
It offers the 28 functions tabulated below.

Here are a few examples.

set a = 5

set b = (3 4 6 -2)

set c = ‘calc exp="’min($a, $b[1], $b[2], $b[3])’"‘

set d = ‘calc exp="’dim($b[4], $a) + dim($b[3], $a)’"‘

The first expression finds the minimum of the four integers, namely 3 and assigns it to variable
c. The second expression sums two positive differences: 0 and 1 respectively.

set mag = ‘calc exp="’-2.5 * LOG10($counts)’"‘

set separation = ‘calc exp="atand2(35.3,$dist)"‘

echo The nearest index is ‘calc exp="nint($x+0.5)"‘

Variable mag is the magnitude derived from the flux stored in variable counts. separation is
assigned the inverse tangent of 35.3 divided by the value of variable dist measured between
−180 and 180 degrees.

SC/4.4 23

Function Number of arguments Description

SQRT 1 square root:
√

arg
LOG 1 natural logarithm: ln(arg)
LOG10 1 common logarithm: log10(arg)
EXP 1 exponential: exp(arg)
ABS 1 absolute (positive) value: |arg|
NINT 1 nearest integer value to arg
MAX 2 or more maximum of arguments
MIN 2 or more minimum of arguments
DIM 2 Fortran DIM (positive difference) function
MOD 2 Fortran MOD (remainder) function
SIGN 2 Fortran SIGN (transfer of sign) function
SIN* 1 sine function: sin(arg)
COS* 1 cosine function: cos(arg)
TAN* 1 tangent function: tan(arg)
ASIN* 1 inverse sine function: sin−1(arg)
ACOS* 1 inverse cosine function: cos−1(arg)
ATAN* 1 inverse tangent function: tan−1(arg)
ATAN2* 2 inverse tangent function: tan−1(arg1/arg2)
SINH* 1 hyperbolic sine function: sinh(arg)
COSH* 1 hyperbolic cosine function: cosh(arg)
TANH* 1 hyperbolic tangent function: tanh(arg)
SIND* 1 sine function: sin(arg)
COSD* 1 cosine function: cos(arg)
TAND* 1 tangent function: tan(arg)
ASIND* 1 inverse sine function: sin−1(arg)
ACOSD* 1 inverse cosine function: cos−1(arg)
ATAND* 1 inverse tangent function: tan−1(arg)
ATAN2D* 2 inverse tangent function: tan−1(arg1/arg2)

*Function does not support integer arithmetic.

The intrinsic functions recognised by calc (adapted from SUN/61). The angular arguments/results
of the trigonometric functions are in radians, except those suffixed with a D, which are in degrees.

24 SC/4.4

11 String Processing

The C-shell has no string-manipulation tools. Instead we mostly use the echo command and
awk utility. The latter has its own language for text processing and you can write awk scripts
to perform complex processing, normally from files. There are even books devoted to awk such
as the succinctly titled sed & awk by Dale Dougherty (O’Reilly & Associates, 1990). Naturally
enough a detailed description is far beyond the scope of this cookbook.

Other relevant tools include cut, paste, grep and sed. The last two and awk gain much of
their power from regular expressions. A regular expression is a pattern of characters used to
match the same characters in a search through text. The pattern can include special characters
to refine the search. They include ones to anchor to the beginning or end of a line, select a
specific number of characters, specify any characters and so on. If you are going to write lots of
scripts which manipulate text, learning about regular expressions is time well spent.

Here we present a few one-line recipes. They can be included inline, but for clarity the values
derived via awk are assigned to variables using the set command. Note that these may not be
the most concise way of achieving the desired results.

11.1 String concatenation

To concatenate strings, you merely abut them.

set catal = "NGC "

set number = 2345

set object = "Processing $catal$number."

So object is assigned to "Processing NGC 2345.". Note that spaces must be enclosed in
quotes. If you want to embed variable substitutions, these should be double quotes as above.

On occasions the variable name is ambiguous. Then you have to break up the string. Suppose
you want text to be "File cde1 is not abc". You can either make two abutted strings or
encase the variable name in braces ({ }), as shown below.

set name1 = abc

set name = cde

set text = "File $name""1 is not $name1" # These two assignments

set text = "File ${name}1 is not $name1" # are equivalent.

Here are some other examples of string concatenation.

echo ’CIRCLE (’$centre[1]’, ’$centre[2]’, 20)’ > $file1".ard"

gausmooth in=$root"$suffix" out=${root}_sm accept

linplot ../arc/near_arc"($lbnd":"$ubnd)"

SC/4.4 25

11.2 Obtain the length of a string

This requires either the wc command in an expression (see Section 10), or the awk function
length. Here we determine the number of characters in variable object using both recipes.

set object = "Processing NGC 2345"

set nchar = ‘echo $object | awk ’{print length($0)}’‘ # = 19

@ nchar = ‘echo $object | wc -c‘ - 1

If the variable is an array, you can either obtain the length of the whole array or just an element.
For the whole the number of characters is the length of a space-separated list of the elements.
The double quotes are delimiters; they are not part of the string so are not counted.

set places = (Jupiter "Eagle Nebula" "Gamma quadrant")

set nchara = ‘echo $places | awk ’{print length($0)}’‘ # = 35

set nchar1 = ‘echo $places[1] | awk ’{print length($0)}’‘ # = 7

set nchar2 = ‘echo $places[2] | awk ’{print length($0)}’‘ # = 12

11.3 Find the position of a substring

This requires the awk function index. This returns zero if the string could not be located.
Note that comparisons are case sensitive.

set catal = "NGC "

set number = 2345

set object = "Processing $catal$number."

set cind = ‘echo $object | awk ’{print index($0,"ngc")}’‘ # = 0

set cind = ‘echo $object | awk ’{print index($0,"NGC")}’‘ # = 12

set places = (Jupiter "Eagle Nebula" "Gamma quadrant")

set cposa = ‘echo $places | awk ’{print index($0,"ebu")}’‘ # = 16

set cposn = ‘echo $places | awk ’{print index($0,"alpha")}’‘ # = 0

set cpos1 = ‘echo $places[1] | awk ’{print index($0,"Owl")}’‘ # = 0

set cpos2 = ‘echo $places[2] | awk ’{print index($0,"ebu")}’‘ # = 8

set cpos3 = ‘echo $places[3] | awk ’{print index($0,"rant")}’‘ # = 11

An array of strings is treated as a space-separated list of the elements. The double quotes are
delimiters; they are not part of the string so are not counted.

26 SC/4.4

11.4 Extracting a substring

One method uses the awk function substr(s,c,n). This returns the substring from string s

starting from character position c up to a maximum length of n characters. If n is not supplied,
the rest of the string from c is returned. Let’s see it in action.

set caption = "Processing NGC 2345."

set object = ‘echo $caption | awk ’{print substr($0,12,8)}’‘ # = "NGC 2345"

set objec_ = ‘echo $caption | awk ’{print substr($0,16)}’‘ # = "2345."

set places = (Jupiter "Eagle Nebula" "Gamma quadrant")

set oba = ‘echo $places | awk ’{print substr($0,28,4)}’‘ # = "quad"

set ob1 = ‘echo $places[3] | awk ’{print substr($0,7)}’‘ # = "quadrant"

An array of strings is treated as a space-separated list of the elements. The double quotes are
delimiters; they are not part of the string so are not counted.

Another method uses the UNIX cut command. It too can specify a range or ranges of characters.
It can also extract fields separated by nominated characters. Here are some examples using the
same values for the array places

set cut1 = ‘echo $places | cut -d ’ ’ -f1,3‘ # = "Jupiter Nebula"

set cut2 = ‘echo $places[3] | cut -d a -f2‘ # = "mm"

set cut3 = ‘echo $places | cut -c3,11‘ # = "pg"

set cut4 = ‘echo $places | cut -c3-11‘ # = "piter Eag"

set cut5 = ‘cut -d ’ ’ -f1,3-5 table.dat‘ # Extracts fields 1,3,4,5

from file table.dat

The -d qualifier specifies the delimiter between associated data (otherwise called fields). Note
the the space delimiter must be quoted. The -f qualifier selects the fields. You can also select
character columns with the -c qualifier. Both -c and -f can comprise a comma-separated list
of individual values and/or ranges of values separated by a hyphen. As you might expect, cut
can take its input from files too.

11.5 Split a string into an array

The awk function split(s,a,sep) splits a string s into an awk array a using the delimiter sep.

set time = 12:34:56

set hr = ‘echo $time | awk ’{split($0,a,":"); print a[1]}’‘ # = 12

set sec = ‘echo $time | awk ’{split($0,a,":"); print a[3]}’‘ # = 56

= 12 34 56

set hms = ‘echo $time | awk ’{split($0,a,":"); print a[1], a[2], a[3]}’‘

set hms = ‘echo $time | awk ’{split($0,a,":"); for (i=1; i<=3; i++) print a[i]}’‘

set hms = ‘echo $time | awk ’BEGIN{FS=":"}{for (i=1; i<=NF; i++) print $i}’‘

Variable hms is an array so hms[2] is 34. The last three statements are equivalent, but the last
two more convenient for longer arrays. In the second you can specify the start index and number
of elements to print. If, however, the number of values can vary and you want all of them to
become array elements, then use the final recipe; here you specify the field separator with awk’s
FS built-in variable, and the number of values with the NF built-in variable.

SC/4.4 27

11.6 Changing case

Some implementations of awk offer functions to change case.

set text = "Eta-Aquarid shower"

set utext = ‘echo $text | awk ’{print toupper($0)}’‘ # = "ETA-AQUARID SHOWER"

set ltext = ‘echo $text | awk ’{print tolower($0)}’‘ # = "eta-aquarid shower"

11.7 String substitution

Some implementations of awk offer substitution functions gsub(e,s) and sub(e,s). The latter
substitutes the s for the first match with the regular expression e in our supplied text. The former
replaces every occurrence.

set text = "Eta-Aquarid shower"

= "Eta-Aquarid stream"

set text = ‘echo $text | awk ’{sub("shower","stream"); print $0}’‘

= "Eta-Aquxid strex"

set text1 = ‘echo $text | awk ’{gsub("a[a-z]","x"); print $0}’‘

= "Eta-Aquaritt stream"

set text2 = ‘echo $text | awk ’{sub("a*d","tt"); print $0}’‘

set name = "Abell 3158"

set catalogue = ‘echo $name | awk ’{sub("[0-9]+",""); print $0}’‘ # = Abell

set short = ‘echo $name | awk ’{gsub("[b-z]",""); print $0}’‘ # = "A 3158"

There is also sed.

set text = ‘echo $text | sed ’s/shower/stream/’‘

is equivalent to the first awk example above. Similarly you could replace all occurrences.

set text1 = ‘echo $text | sed ’s/a[a-z]/x/g’‘

is equivalent to the second example. The final g requests that the substitution is applied to all
occurrences.

11.8 Formatted Printing

A script may process and analyse many datasets, and the results from its calculations will often
need presentation, often in tabular form or some aligned output, either for human readability
or to be read by some other software.

The UNIX command printf permits formatted output. It is analogous to the C function of the
same name. The syntax is

printf "<format string>" <space-separated argument list of variables>

28 SC/4.4

The format string may contain text, conver-
sion codes, and interpreted sequences.
The conversion codes appear in the same
order as the arguments they correspond to.
A conversion code has the form

%[flag][width][.][precision]code

where the items in brackets are optional.

• The code determines how the output
is is converted for printing. The most
commonly used appear in the upper
table.

• The width is a positive integer giving
the minimum field width. A value
requiring more characters than the
width is still written in full. A da-
tum needing few characters than the
width is right justified, unless the flag
is -. * substitutes the next variable in
the argument list, allowing the width
to be programmable.

• The precision specifies the number of
decimal places for floating point; for
strings it sets the maximum number
of characters to print. Again * sub-
stitutes the next variable in the argu-
ment list, whose value should be a pos-
itive integer.

• The flag provides additional format
control. The main functions are listed
in the lower table.

The interpreted sequences include:
\n for a new line, \" for a double quote, \%
for a percentage sign, and \\ for a backslash.

Format codes

Code Interpretation

c single character
s string

d, i signed integer
o integer written as unsigned octal
x, X integer written as unsigned hex-

adecimal, the latter using uppercase
notation

e, E floating point in exponent
form m.nnnnne±xx or m.nnnnnE±xx
respectively

f floating point in mmm.nnnn format
g uses whichever format of d, e, or f is

shortest
G uses whichever format of d, E, or f is

shortest

Flags

Code Purpose

- left justify
+ begin a signed number with a + or -
blank Add a space before a signed number

that does not begin with a + or -
0 pad a number on the left with zeroes
use a decimal point for the floating-

point conversions, and do not remove
trailing zeroes for g and G codes

If that’s computer gobbledygook here are some examples to make it clearer. The result of
follows each printf command, unless it is assigned to a variable through the set mechanism.
The commentary after the # is neither part of the output nor should it be entered to replicate
the examples. Let us start with some integer values.

set int = 1234

set nint = -999

printf "%8i\n" $int # 8-character field, right justified

1234

printf "%-8d%d\n" $int $nint # Two integers, the first left justified

1234 -999

SC/4.4 29

printf "%+8i\n" $int

+1234

printf "%08i\n" $int

00001234

Now we turn to some floating-point examples.

set c = 299972.458

printf "%f %g %e\n" $c $c $c # The three main codes

299972.458000 299972 2.999725e+05

printf "%.2f %.2g %.2e\n" $c $c $c # As before but set a precision

299972.46 3e+05 +3.00e+05

printf "%12.2f %.2G %+.2E\n" $c $c $c # Show the effect of some flags,

299972.46 3.0E+05 +3.00E+05 # a width, and E and G codes

Finally we have some character examples of printf.

set system = Wavelength

set confid = 95

set ndf = m31

set acol = 12

set dp = 2

printf "Confidence limit %d%% in the %s system\n" $confid $system

Confidence limit 95% in the Wavelength system # Simple case, percentage sign

printf "Confidence limit %f.1%% in the %.4s system\n" $confid $system

Confidence limit 95.0% in the Wave system # Truncates to four characters

set heading = ‘printf "%10s: %s\n%10s: %s\n\n" "system" $system "file" $ndf‘

echo $heading # Aligned output, saved to a

system: Wavelength # variable

file: m31

printf "%*s: %s\n%*s: %.*f\n\n" $acol "system" \

$system $acol "confidence" 2 $confid

system: Wavelength # Aligned output with a variable

confidence: 95.00 # width and precision

set heading = "" # Form a heading by appending to

foreach k ($keywords) # variable in a loop. Note the

set heading = $heading ‘printf "%8s " $k‘ # absence of \n.

end

echo ‘printf "%s\n" $heading

Note that there are different implementations. While you can check your system’s man pages
that the desired feature is present, a better way is to experiment on the command line.

30 SC/4.4

12 Dealing with Files

12.1 Extracting parts of filenames

Occasionally you’ll want to work with parts of a filename, such as the path or the file type. The
C-shell provides filename modifiers that select the various portions. A couple are shown in the
example below.

set type = $1:e

set name = $1:r

if ($type == "bdf") then

echo "Use BDF2NDF on a VAX to convert the Interim file $1"

else if ($type != "dst") then

hdstrace $name

else

hdstrace @’"$1"’

endif

Suppose the first argument of a script, $1, is a filename called galaxy.bdf. The value of variable
type is bdf and name equates to galaxy because of the presence of the filename modifiers :e

and :r. The rest of the script uses the file type to control the processing, in this case to provide
a listing of the contents of a data file using the HDSTRACE utility.

The complete list of modifiers, their meanings, and examples is presented in the table below.

Modifier Value returned Value for filename
/star/bin/kappa/comwest.sdf

:e Portion of the filename following a
full stop; if the filename does not con-
tain a full stop, it returns a null string

sdf

:r Portion of the filename preceding
a full stop; if there is no full
stop present, it returns the complete
filename

comwest

:h The path of the filename (mnemonic:
h for head)

/star/bin/kappa

:t The tail of the file specification, ex-
cluding the path

comwest.sdf

SC/4.4 31

12.2 Process a Series of Files

One of the most common things you’ll want to do, having devised a data-processing path, is to
apply those operations to a series of data files. For this you need a foreach...end construct.

convert # Only need be invoked once per process

foreach file (*.fit)

stats $file

end

This takes all the FITS files in the current directory and computes the statistics for them using
the stats command from KAPPA. file is a shell variable. Each time in the loop file is assigned
to the name of the next file of the list between the parentheses. The * is the familiar wildcard

which matches any string. Remember when you want to use the shell variable’s value you prefix
it with a $. Thus $file is the filename.

12.2.1 NDFs

Some data formats like the NDF demand that only the file name (i.e. what appears before the
last dot) be given in commands. To achieve this you must first strip off the remainder (the file
extension or type) with the :r file modifier.

foreach file (*.sdf)

histogram $file:r accept

end

This processes all the HDS files in the current directory and calculates an histogram for each of
them using the histogram command from KAPPA. It assumes that the files are NDFs. The :r

instructs the shell to remove the file extension (the part of the name following the the rightmost
full stop). If we didn’t do this, the histogram task would try to find NDFs called SDF within
each of the HDS files.

12.2.2 Wildcarded lists of files

You can give a list of files separated by spaces, each of which can include the various UNIX
wildcards. Thus the code below would report the name of each NDF and its standard deviation.
The NDFs are called ‘Z’ followed by a single character, ccd1, ccd2, ccd3, and spot.

foreach file (Z?.sdf ccd[1-3].sdf spot.sdf)

echo "NDF:" $file:r"; sigma: "‘stats $file:r | grep "Standard deviation"‘

end

echo writes to standard output, so you can write text including values of shell variables to the
screen or redirect it to a file. Thus the output produced by stats is piped (the | is the pipe)
into the UNIX grep utility to search for the string "Standard deviation". The ‘ ‘ invokes
the command, and the resulting standard deviation is substituted.

You might just want to provide an arbitrary list of NDFs as arguments to a generic script. Sup-
pose you had a script called splotem, and you have made it executable with chmod +x splotem.

32 SC/4.4

#!/bin/csh

figaro # Only need be invoked once per process

foreach file ($*)

if (-e $file) then

splot $file:r accept

endif

end

Notice the -e file-comparison operator. It tests whether the file exists or not. (Section 12.4 has
a full list of the file operators.) To plot a series of spectra stored in NDFs, you just invoke it
something like this.

% ./splotem myndf.sdf arc[a-z].sdf hd[0-9]*.sdf

See the glossary for a list of the available wildcards such as the [a-z] in the above example.

12.2.3 Exclude the .sdf for NDFs

In the splotem example from the previous section the list of NDFs on the command line required
the inclusion of the .sdf file extension. Having to supply the .sdf for an NDF is abnormal.
For reasons of familiarity and ease of use, you probably want your relevant scripts to accept a
list of NDF names and to append the file extension automatically before the list is passed to
foreach. So let’s modify the previous example to do this.

#!/bin/csh

figaro # Only need be invoked once per process

Append the HDS file extension to the supplied arguments.

set ndfs

set i = 1

while ($i <= $#argv)

set ndfs = ($ndfs[*] $argv[i]".sdf")

@ i = $i + 1

end

Plot each 1-dimensional NDFs.

foreach file ($ndfs[*])

if (-e $file) then

splot $file:r accept

endif

end

This loops through all the arguments and appends the HDS-file extension to them by using a
work array ndfs. The set defines a value for a shell variable; don’t forget the spaces around the
=. ndfs[*] means all the elements of variable ndfs. The loop adds elements to ndfs which is
initialised without a value. Note the necessary parentheses around the expression ($ndfs[*]

$argv[i]".sdf").

On the command line the wildcards have to be passed verbatim, because the shell will try to
match with files than don’t have the .sdf file extension. Thus you must protect the wildcards
with quotes. It’s a nuisance, but the advantages of wildcards more than compensate.

SC/4.4 33

% ./splotem myndf ’arc[a-z]’ ’hd[0-9]*’

% ./noise myndf ’ccd[a-z]’

If you forget to write the ’ ’, you’ll receive a No match error.

12.2.4 Examine a series of NDFs

A common need is to browse through several datasets, perhaps to locate a specific one, or to
determine which are acceptable for further processing. The following presents images of a series
of NDFs using the display task of KAPPA. The title of each plot tells you which NDF is currently
displayed.

foreach file (*.sdf)

display $file:r axes style="’title==$file:r’" accept

sleep 5

end

sleep pauses the process for a given number of seconds, allowing you to view each image. If
this is too inflexible you could add a prompt so the script displays the image once you press the
return key.

set nfiles = ‘ls *.sdf | wc -w‘

set i = 1

foreach file (*.sdf)

display $file:r axes style="’title==$file:r’" accept

Prompt for the next file unless it is the last.

if ($i < $nfiles) then

echo -n "Next?"

set next = $<

Increment the file counter by one.

@ i++

endif

end

The first lines shows a quick way of counting the number of files. It uses ls to expand the
wildcards, then the command wc to count the number of words. The back quotes cause the
instruction between them to be run and the values generated to be assigned to variable nfiles.

You can substitute another visualisation command for display as appropriate. You can also
use the graphics database to plot more than one image on the screen or to hardcopy. The script
$KAPPA_DIR/multiplot.csh does the latter.

12.3 Filename modification

Thus far the examples have not created a new file. When you want to create an output file, you
need a name for it. This could be an explicit name, one derived from the process identification

number, one generated by some counter, or from the input filename. Here we deal with all but
the trivial first case.

34 SC/4.4

12.3.1 Appending to the input filename

To help identify datasets and to indicate the processing steps used to generate them, their names
are often created by appending suffices to the original file name. This is illustrated below.

foreach file (*.sdf)

set ndf = $file:r

block in=$ndf out=$ndf"_sm" accept

end

This uses block from KAPPA to perform block smoothing on a series of NDFs, creating new
NDFs, each of which takes the name of the corresponding input NDF with a _sm suffix. The ac-
cept keyword accepts the suggested defaults for parameters that would otherwise be prompted.
We use the set to assign the NDF name to variable ndf for clarity.

12.3.2 Appending a counter to the input filename

If a counter is preferred, this example

set count = 1

foreach file (*.sdf)

set ndf = $file:r

@ count = $count + 1

block in=$ndf out=smooth$count accept

end

would behave as the previous one except that the output NDFs would be called smooth1,
smooth2 and so on.

12.3.3 Appending to the input filename

Whilst appending a suffix after each data-processing stage is feasible, it can generate some long
names, which are tedious to handle. Instead you might want to replace part of the input name
with a new string. The following creates another shell variable, ndfout by replacing the string
_flat from the input NDF name with _sm. The script pipes the input name into the sed editor
which performs the substitution.

foreach file (*_flat.sdf)

set ndf = $file:r

set ndfout = ‘echo $ndf | sed ’s#_flat#_sm#’‘

block in=$ndf out=$ndfout accept

end

The # is a delimiter for the strings being substituted; it should be a character that is not present
in the strings being altered. Notice the ‘ ‘ quotes in the assignment of ndfout. These instruct
the shell to process the expression immediately, rather than treating it as a literal string. This is
how you can put values output from UNIX commands and other applications into shell variables.

SC/4.4 35

12.4 File operators

There is a special class of C-shell op-
erator that lets you test the proper-
ties of a file. A file operator is used
in comparison expressions of the form
if (file_operator file) then.
A list of file operators is tabulated to
the right.

The most common usage is to test for
a file’s existence. The following only
runs cleanup if the first argument is
an existing file.

File operators

Operator True if:

-d file is a directory
-e file exists
-f file is ordinary
-o you are the owner of the file
-r file is readable by you
-w file is writable by you
-x file is executable by you
-z file is empty

Check that the file given by the first

argument exists before attempting to

use it.

if (-e $1) then

cleanup $1

endif

Here are some other examples.

Remove any empty directories.

if (-d $file && -z $file) then

rmdir $file

Give execute access to text files with a .csh extension.

else if ($file:e == "csh" && -f $file) then

chmod +x $file

endif

36 SC/4.4

12.5 Creating text files

A frequent feature of scripts is redirecting the output from tasks to a text file. For instance,

hdstrace $file:r > $file:r.lis

fitshead $fits > $$.tmp

directs the output of the hdstrace and fitshead to text files. The name of the first is generated
from the name of the file whose contents are being listed, so for HDS file cosmic.sdf the trace
is stored in cosmic.lis. In the second case, the process identification number is the name of the
text file. You can include this special variable to generate the names of temporary files. (The
:r is described in Section 12.1.)

If you intend to write more than once to a file you should first create the file with the touch
command, and then append output to the file.

touch logfile.lis

foreach file (*.sdf)

echo "FITS headers for $file:r:" >> logfile.lis

fitslist $file:r >> logfile.lis

echo " "

end

Here we list FITS headers from a series of NDFs to file logfile.lis. There is a heading including
the dataset name and blank line between each set of headers. Notice this time we use >> to
append. If you try to redirect with > to an existing file you’ll receive an error message whenever
you have the noclobber variable set. >! redirects regardless of noclobber.

There is an alternative—write the text file as part of the script. This is often a better way for
longer files. It utilises the cat command to create the file.

cat >! catpair_par.lis <<EOF

${refndf}.txt

${compndf}.TXT

${compndf}_match.TXT

C

XPOS

YPOS

XPOS

YPOS

$distance

‘echo $time | awk ’{print substr($0,1,5)}’‘

EOF

The above writes the text between the two EOFs to file catpair_par.lis. Note the second
EOF must begin in column 1. You can choose the delimiting words; common ones are EOF, FOO.
Remember the >! demands that the file be written regardless of whether the file already exists.

A handy feature is that you can embed shell variables, such as refndf and distance in the
example. You can also include commands between left quotes (‘ ‘); the commands are evaluated
before the file is written. However, should you want the special characters $, \, and ‘ ‘ to be
treated literally insert a \ before the delimiting word or a \ before each special character.

SC/4.4 37

12.5.1 Writing a script within a script

The last technique might be needed if your script writes another script, say for overnight batch
processing, in which you want a command to be evaluated when the second script is run, not
the first. You can also write files within this second script, provided you choose different words
to delimit the file contents. Here’s an example which combines both of these techniques.

cat >! /tmp/${user}_batch_${runno}.csh <<EOF

#!/bin/csh

Create the data file.

cat >! /tmp/${user}_data_${runno} <<EOD

$runno

\‘date\‘

‘star/bin/kappa/calc exp="LOG10($C+0.01*$runno)"‘

EOD

<commands to perform the data processing using the data file>

Remove the temporary script and data files.

rm /tmp/${user}batch_${runno}.csh

rm /tmp/${user}_data_${runno}

exit

EOF

chmod +x /tmp/${user}_batch_${runno}.csh

This excerpt writes a script in the temporary directory. The temporary script’s filename includes
our username ($user) and some run number stored in variable runno. The temporary script
begins with the standard comment indicating that it’s a C-shell script. The script’s first action
is to write a three-line data file. Note the different delimiter, EOD. This data file is created only
when the temporary script is run. As we want the time and date information at run time to
be written to the data file, the command substitution backquotes are both escaped with a \.
In contrast, the final line of the data file is evaluated before the temporary script is written.
Finally, the temporary script removes itself and the data file. After making a temporary script,
don’t forget to give it execute permission.

12.6 Reading lines from a text file

There is no simple file reading facility in the C-shell. So we call upon awk again.

set file = ‘awk ’{print $0}’ sources.lis‘

Variable file is a space-delineated array of the lines in file sources.lis. More useful is to
extract a line at a time.

set text = ‘awk -v ln=$j ’{if (NR==ln) print $0}’ sources.lis‘

where shell variable j is a positive integer and no more than the number of lines in the file,
returns the jth line in variable text.

38 SC/4.4

12.7 Reading tabular data

When reading data into your script from a text file you will often require to extract columns of
data, determine the number of lines extracted, and sometimes the number columns and selecting
columns by heading name. The shell does not offer file reading commands, so we fall back heavily
on our friend awk.

12.7.1 Finding the number of fields

The simple recipe is

set ncol = ‘awk ’{if (FNR==1) print NF}’ fornax.dat‘

where FNR is the number of the records read. NF is the number of space-separated fields in that
record. If another character delimits the columns, this can be set by assigning the FS variable
without reading any of the records in the file (because of the BEGIN pattern or through the -F
option).

set nlines = ‘wc fornax.dat‘

set ncol = ‘awk ’BEGIN { FS = ":" }{if (FNR==1) print NF}’ fornax.dat‘

set ncol = ‘awk -F: ’{if (FNR==1) print NF}’ fornax.dat‘

FNR, NF, and FS are called built-in variables.

There may be a header line or some schema before the actual data, you can obtain the field
count from the last line.

set ncol = ‘awk -v nl=$nlines[1] ’{if (FNR==nl) print NF}’ fornax.dat‘

First we obtain the number of lines in the file using wc stored in $lines[1]. This shell variable
is passed into awk, as variable nl, through the -v option.

If you know the comment line begins with a hash (or can be recognised by some other regular
expression) you can do something like this.

set ncol = ‘awk -v i=0 ’{if ($0 !~ /^#/) i++; if (i==1) print NF}’ fornax.dat‘

Here we initialise awk variable i. Then we test the record $0 does not match a line starting
with # and increment i, and only print the number of fields for the first such occurrence.

12.7.2 Extracting columns

For a simple case without any comments.

set col1 = ‘awk ’{print $1}’ fornax.dat‘

Variable col1 is an array of the values of the first column. If you want an arbitrary column

set col$j = ‘awk -v cn=$j ’{print $cn}’ fornax.dat‘

SC/4.4 39

where shell variable j is a positive integer and no more than the number of columns, returns the
jth column in the shell array colj.

If there are comment lines to ignore, say beginning with # or *, the following excludes those
from the array of values.

set col$j = ‘awk -v cn=$j ’$0!~/^[#*]/ {print $cn}’ fornax.dat‘

or you may want to exclude lines with alphabetic characters.

set col2 = ‘awk ’$0!~/[A-DF-Za-df-z]/ {print $2}’ fornax.dat‘

Notice that E and e are omitted to allow for exponents.

12.7.3 Selecting a range

awk lets you select the lines to extract through boolean expressions, that includes involving the
column data themselves, or line numbers through NR.

set col$j = ‘awk -v cn=$j ’$2 > 0.579 {print $cn}’ fornax.dat‘

set col$j = ‘awk -v cn=$j ’$2>0.579 && $2<1.0 {print $cn}’ fornax.dat‘

set col4 = ‘awk ’sqrt($1*$1+$2*$2) > 1 {print $4};’ fornax.dat‘

set col2 = ‘awk ’NR<=5 || NR>10 {print $2}’ fornax.dat‘

set col2 = ‘awk ’$0!~/-999/ {print $2}’ fornax.dat‘

set nrow = $#col2.

The first example only includes those values in column 2 that exceed 0.579. The second further
restricts the values to be no greater than 1.0. The third case involves the square-root of the
sum of the squares of the first two columns. The fourth omits the sixth to tenth rows. The fifth
example tests for the absence of a null value, -999.

You can find out how many values were extracted through $#var, such as in the final line above.

You have the standard relational and boolean operators available, as well as ∼ and !∼ for match
and does not match respectively. These last two con involve regular expressions giving powerful
selection tools.

12.7.4 Choosing columns by name

Suppose your text file has a heading line listing the names of the columns.

set name = Vmag

set cn = ‘awk -v col=$name ’{if (NR==1) {for(i=1;i<=NF;\

i++) {if ($i==col) {print i; break}}}}’ fornax.dat‘

That looks complicated, so let’s go through it step by step. We supply the required column
name name into the awk variable col through to -v command-line option. For the first record
NR==1, we loop through all the fields (NF starting at the first, and if the current column name
($i) equals the requested name, the column number is printed and we break from the loop. If
the field is not present, the result is null. The extra braces associate commands in the same for
or if block. Note that unlike C-shell, in awk the line break can only appear immediately after
a semicolon or brace.

The above can be improved upon using the toupper function to avoid case sensitivity.

40 SC/4.4

set name = Vmag

set cn = ‘awk -v col=$name ’{if (NR==1) {for(i=1;i<=NF;\

i++) {if (toupper($i)==toupper(col)) {print i; break}}}}’ fornax.dat‘

Or you could attempt to match a regular expression.

12.8 Reading from dynamic text files

You can also read from a text file created dynamically from within your script.

./doubleword < mynovel.txt

myprog <<BAR

320 512

$nstars

‘wc -l < brightnesses.txt‘

testimage

BAR

commentary <<\foo

The AITCH package offers unrivalled facilities.

It is also easy to use because of its GUI interface.

Save $$$ if you buy now.

foo

Command ./doubleword reads its standard input from the file mynovel.txt. The <<word obtains
the input data from the script file itself until there is line beginning word. You may also include
variables and commands to execute as the $, \, and ‘ ‘ retain their special meaning. If you
want these characters to be treated literally, say to prevent substitution, insert a \ before the
delimiting word. The command myprog reads from the script, substituting the value of variable
nstars in the second line, and the number of lines in file brightnesses.txt in the third line.

The technical term for such files are here documents.

12.9 Discarding text output

The output from some routines is often unwanted in scripts. In these cases redirect the standard

output to a null file.

correlate in1=frame1 in2=frame2 out=framec > /dev/null

Here the text output from the task correlate is disposed of to the /dev/null file. Messages
from Starlink tasks and usually Fortran channel 6 write to standard output.

SC/4.4 41

12.10 Obtaining dataset attributes

When writing a data-processing pipeline connecting several applications you will often need to
know some attribute of the data file, such as its number of dimensions, its shape, whether or
not it may contain bad pixels, a variance array or a specified extension. The way to access these
data is with ndftrace from KAPPA and parget commands. ndftrace inquires the data, and
parget communicates the information to a shell variable.

12.10.1 Obtaining dataset shape

Suppose that you want to process all the two-dimensional NDFs in a directory. You would write
something like this in your script.

foreach file (*.sdf)

ndftrace $file:r > /dev/null

set nodims = ‘parget ndim ndftrace‘

if ($nodims == 2) then

<perform the processing of the two-dimensional datasets>

endif

end

Note although called ndftrace, this function can determine the properties of foreign data for-
mats through the automatic conversion system (SUN/55, SSN/20). Of course, other formats do
not have all the facilities of an NDF.

If you want the dimensions of a FITS file supplied as the first argument you need this ingredient.

ndftrace $1 > /dev/null

set dims = ‘parget dims ndftrace‘

Then dims[i] will contain the size of the ith dimension. Similarly

ndftrace $1 > /dev/null

set lbnd = ‘parget lbound ndftrace‘

set ubnd = ‘parget ubound‘

will assign the pixel bounds to arrays lbnd and ubnd.

12.10.2 Available attributes

Below is a complete list of the results parameters from ndftrace. If the parameter is an array,
it will have one element per dimension of the data array (given by parameter NDIM); except
for EXTNAM and EXTTYPE where there is one element per extension (given by parameter
NEXTN). Several of the axis parameters are only set if the ndftrace input keyword fullaxis

is set (not the default). To obtain, say, the data type of the axis centres of the current dataset,
the code would look like this.

ndftrace fullaxis accept > dev/null

set axtype = ‘parget atype ndftrace‘

42 SC/4.4

Name Array? Meaning

AEND Yes The axis upper extents of the NDF. For non-monotonic axes, zero
is used. See parameter AMONO. This is not assigned if AXIS is
FALSE.

AFORM Yes The storage forms of the axis centres of the NDF. This is only
written when parameter FULLAXIS is TRUE and AXIS is TRUE.

ALABEL Yes The axis labels of the NDF. This is not assigned if AXIS is FALSE.
AMONO Yes These are TRUE when the axis centres are monotonic, and FALSE

otherwise. This is not assigned if AXIS is FALSE.
ANORM Yes The axis normalisation flags of the NDF. This is only written when

FULLAXIS is TRUE and AXIS is TRUE.
ASTART Yes The axis lower extents of the NDF. For non-monotonic axes, zero

is used. See parameter AMONO. This is not assigned if AXIS is
FALSE.

ATYPE Yes The data types of the axis centres of the NDF. This is only written
when FULLAXIS is TRUE and AXIS is TRUE.

AUNITS Yes The axis units of the NDF. This is not assigned if AXIS is FALSE.
AVARIANCE Yes Whether or not there are axis variance arrays present in the NDF.

This is only written when FULLAXIS is TRUE and AXIS is TRUE.
AXIS Whether or not the NDF has an axis system.
BAD If TRUE, the NDF’s data array may contain bad values.
BADBITS The BADBITS mask. This is only valid when QUALITY is TRUE.
CURRENT The integer Frame index of the current co-ordinate Frame in the

WCS component.
DIMS Yes The dimensions of the NDF.
EXTNAME Yes The names of the extensions in the NDF. It is only written when

NEXTN is positive.
EXTTYPE Yes The types of the extensions in the NDF. Their order corresponds

to the names in EXTNAME. It is only written when NEXTN is
positive.

FDIM Yes The numbers of axes in each co-ordinate Frame stored in the WCS
component of the NDF. The elements in this parameter correspond
to those in FDOMAIN and FTITLE. The number of elements in
each of these parameters is given by NFRAME.

FDOMAIN Yes The domain of each co-ordinate Frame stored in the WCS com-
ponent of the NDF. The elements in this parameter correspond to
those in FDIM and FTITLE. The number of elements in each of
these parameters is given by NFRAME.

FLABEL Yes The axis labels from the current WCS Frame of the NDF.
FLBND Yes The lower bounds of the bounding box enclosing the NDF in the

current WCS Frame. The number of elements in this parameter is
equal to the number of axes in the current WCS Frame (see FDIM).

FORM The storage form of the NDF’s data array.
FTITLE Yes The title of each co-ordinate Frame stored in the WCS component

of the NDF. The elements in this parameter correspond to those
in FDOMAIN and FDIM. The number of elements in each of these
parameters is given by NFRAME.

SC/4.4 43

Name Array? Meaning

FUBND Yes The upper bounds of the bounding box enclosing the NDF in the
current WCS Frame. The number of elements in this parameter is
equal to the number of axes in the current WCS Frame (see FDIM).

FUNIT Yes The axis units from the current WCS Frame of the NDF.
HISTORY Whether or not the NDF contains HISTORY records.
LABEL The label of the NDF.
LBOUND Yes The lower bounds of the NDF.
NDIM The number of dimensions of the NDF.
NEXTN The number of extensions in the NDF.
NFRAME The number of WCS domains described by FDIM, FDOMAIN and

FTITLE. Set to zero if WCS is FALSE.
QUALITY Whether or not the NDF contains a QUALITY array.
TITLE The title of the NDF.
TYPE The data type of the NDF’s data array.
UBOUND Yes The upper bounds of the NDF.
UNITS The units of the NDF.
VARIANCE Whether or not the NDF contains a VARIANCE array.
WCS Whether or not the NDF has any WCS co-ordinate Frames, over

and above the default GRID, PIXEL and AXIS Frames.
WIDTH Yes Whether or not there are axis width arrays present in the NDF.

This is only written when FULLAXIS is TRUE and AXIS is TRUE.

44 SC/4.4

12.10.3 Does the dataset have variance/quality/axis/history information?

Suppose you have an application which demands that variance information be present, say for
optimal extraction of spectra, you could test for the existence of a variance array in your FITS

file called dataset.fit like this.

Enable automatic conversion

convert # Needs to be invoked only once per process

set file = dataset.fit

ndftrace $file > /dev/null

set varpres = ‘parget variance ndftrace‘

if ($varpres == "FALSE") then

echo "File $file does not contain variance information"

else

<process the dataset>

endif

The logical results parameters have values TRUE or FALSE. You merely substitute another compo-
nent such as quality or axis in the parget command to test for the presence of these components.

12.10.4 Testing for bad pixels

Imagine you have an application which could not process bad pixels. You could test whether a
dataset might contain bad pixels, and run some pre-processing task to remove them first. This
attribute could be inquired via ndftrace. If you need to know whether or not any were actually
present, you should run setbad from KAPPA first.

setbad $file

ndftrace $file > /dev/null

set badpix = ‘parget bad ndftrace‘

if (badpix == "TRUE") then

<remove the bad pixels>

else

goto tidy

endif

<perform data processing>

tidy:

<tidy any temporary files, windows etc.>

exit

Here we also introduce the goto command—yes there really is one. It is usually reserved for
exiting (goto exit), or, as here, moving to a named label. This lets us skip over some code,
and move directly to the closedown tidying operations. Notice the colon terminating the label
itself, and that it is absent from the goto command.

SC/4.4 45

12.10.5 Testing for a spectral dataset

One recipe for testing for a spectrum is to look at the axis labels. (whereas a modern approach
might use WCS information). Here is a longer example showing how this might be implemented.
Suppose the name of the dataset being probed is stored in variable ndf.

Get the full attributes.

ndftrace $ndf fullaxis accept > /dev/null

Assign the axis labels and number of dimensions to variables.

set axlabel = ‘parget atype ndftrace‘

set nodims = ‘parget ndim‘

Exit the script when there are too many dimensions to handle.

if ($nodims > 2) then

echo Cannot process a $nodims-dimensional dataset.

goto exit

endif

Loop for each dimension or until a spectral axis is detected.

set i = 1

set spectrum = FALSE

while ($i <= nodims && $spectrum == FALSE)

For simplicity the definition of a spectral axis is that

the axis label is one of a list of acceptable values. This

test could be made more sophisticated. The toupper converts the

label to uppercase to simplify the comparison. Note the \ line

continuation.

set uaxlabel = ‘echo $axlabel[$i] | awk ’{print toupper($0)}’‘

if ($uaxlabel == "WAVELENGTH" || $uaxlabel == "FREQUENCY" \

$uaxlabel == "VELOCITY") then

Record that the axis is found and which dimension it is.

set spectrum = TRUE

set spaxis = $i

endif

@ i++

end

Process the spectrum.

if ($spectrum == TRUE) then

Rotate the dataset to make the spectral axis along the first

dimension.

if ($spaxis == 2) then

irot90 $file $file"_rot" accept

Fit the continuum.

sfit spectrum=$file"_rot" order=2 output=$file"_fit" accept

else

sfit spectrum=$file order=2 output=$file"_fit accept

end if

endif

46 SC/4.4

12.11 FITS Headers

Associated with FITS files and many NDFs is header information stored in 80-character ‘cards’.
It is possible to use these ancillary data in your script. Each non-comment header has a keyword,
by which you can reference it; a value; and usually a comment. KAPPA from V0.10 has a few
commands for processing FITS header information described in the following sections.

12.11.1 Testing for the existence of a FITS header value

Suppose that you wanted to determine whether an NDF called image123 contains an AIRMASS
keyword in its FITS headers (stored in the FITS extension).

set airpres = ‘fitsexist image123 airmass‘

if ($airpres == "TRUE") then

<access AIRMASS FITS header>

endif

Variable airpres would be assigned "TRUE" when the AIRMASS card was present, and "FALSE"

otherwise. Remember that the ‘ ‘ quotes cause the enclosed command to be executed.

12.11.2 Reading a FITS header value

Once we know the named header exists, we can then assign its value to a shell variable.

set airpres = ‘fitsexist image123 airmass‘

if ($airpres == "TRUE") then

set airmass = ‘fitsval image123 airmass‘

echo "The airmass for image123 is $airmass."

endif

12.11.3 Writing or modifying a FITS header value

We can also write new headers at specified locations (the default being just before the END card),
or revise the value and/or comment of existing headers. As we know the header AIRMASS exists
in image123, the following revises the value and comment of the AIRMASS header. It also writes
a new header called FILTER immediately preceding the AIRMASS card assigning it value B and
comment Waveband.

fitswrite image123 airmass value=1.062 comment=\"Corrected airmass\"

fitswrite image123 filter position=airmass value=B comment=Waveband

As we want the metacharacters " to be treated literally, each is preceded by a backslash.

SC/4.4 47

12.12 Accessing other objects

You can manipulate data objects in HDS files, such as components of an NDF’s extension. There
are several Starlink applications for this purpose including the FIGARO commands copobj,
creobj, delobj, renobj, setobj; and the KAPPA commands setext, and erase.

For example, if you wanted to obtain the value of the EPOCH object from an extension called
IRAS_ASTROMETRY in an NDF called lmc, you could do it like this.

set year = ‘setext lmc xname=iras_astrometry option=get \

cname=epoch noloop‘

The noloop prevents prompting for another extension-editing operation. The single backslash
is the line continuation.

12.13 Defining NDF sections with variables

If you want to define a subset or superset of a dataset, most Starlink applications recognise NDF

sections (see SUN/95’s chapter called “NDF Sections”) appended after the name.

A näıve approach might expect the following to work

set lbnd = 50

set ubnd = 120

linplot $KAPPA_DIR/spectrum"($lbnd:$ubnd)"

display $KAPPA_DIR/comwest"($lbnd:$ubnd",$lbnd~$ubnd)"

however, they generate the Bad : modifier in $ ($). error. That’s because it is stupidly
looking for a filename modifier :$ (see Section 12.1).

Instead here are some recipes that work.

set lbnd = 50

set ubnd = 120

set lrange = "101:150"

linplot $KAPPA_DIR/spectrum"($lbnd":"$ubnd)"

stats abc"(-20:99,~$ubnd)"

display $KAPPA_DIR/comwest"($lbnd":"$ubnd",$lbnd":"$ubnd")"

histogram hale-bopp.fit’(’$lbnd’:’$ubnd’,’$lbnd’:’$ubnd’)’

ndfcopy $file1.imh"("$lbnd":"$ubnd","$lrange")" $work"1"

splot hd102456’(’$ubnd~60’)’

An easy-to-remember formula is to enclose the parentheses and colons in quotes.

48 SC/4.4

13 Loop a specified number of times

Suppose that you want to loop a specified number of times. For this you need a while statement,
as in this example.

set count = 1

set tempin = myndf

set box = 23

while ($count < 5)

@ box = $box - $count * 2

block in=$tempin out=tempndf box=$box

mv tempndf.sdf myndf_sm4.sdf

set tempin = myndf_sm4

@ count = $count + 1

end

This performs four block smoothing operations, with a decreasing box size, on a NDF called
myndf, the final result being stored in the NDF called myndf_sm4. The while statement tests
a conditional statement and loops if it is true. So here it loops whenever the value of count is
less than 5. For a list of the available operators see Section 10.1 or the man pages.

% man csh

/Expressions

The box size for the smoothing is evaluated in an expression @ box = $box - $count * 2.
Note the space between the @ and the variable, and the spaces around the =. Thus the box sizes
will be 21, 17, 11, 3. Further details are in Section 10.1. You should also give the variable a value
with set before assigning it an expression. Another expression increments the counter count.
The NDF called tempndf is overwritten for each smooth using the standard UNIX command
mv.

SC/4.4 49

14 UNIX-style options

If you want other arguments, or a UNIX-like set of options for specifying arguments with defaults,
you’ll need to use switch and shift statements, rather than the simple while loop.

Suppose that we want to obtain photometric details of a galaxy, known to be the brightest
object in a series of NDFs. Before that’s possible we must first measure the background in each
image. To reduce contamination that could bias the determination of the sky we mask the region
containing the galaxy. Here we obtain the values for the shape, orientation, and the names of
the NDFs, and assign them to shell variables. There are also default values.

Initialise some shell variables, including the default shape

and orientation.

set major = 82

set minor = 44

set orient = 152

set args = ($argv[1-])

set ndfs

Check that there are some arguments present.

if ($#args == 0) then

echo "Usage: galmask [-a semi-major] [-b semi-minor] " \

"[-o orientation] ndf1 [ndf2...]"

exit

endif

Process each of the arguments to the script.

while ($#args > 0)

switch ($args[1])

case -a: # Semi-major axis

shift args

set major = $args[1]

shift args

breaksw

case -b: # Semi-minor axis

shift args

set minor = $args[1]

shift args

breaksw

case -o: # Orientation

shift args

set orient = $args[1]

shift args

breaksw

case *: # The NDFs

set ndfs = ($ndfs[1-] $args[1])

shift args

breaksw

endsw

end

Loop through the remaining arguments, assuming that these are NDFs.

foreach file ($ndfs[*])

: : :

50 SC/4.4

Some defaults are defined so that if the argument is not present, there is a suitable value. So for
instance, the ellipse orientation is 152◦ unless there is a -o orientation-value on the command
line when invoking the script.

The switch looks for specific arguments. If the first argument matches one of the allowed
cases: -a, -b, -o, or any string (*) in that order, the script jumps to that case, and follows
the commands there until it encounters the breaksw, and then the script moves to the endsw
statement. You may be wondering why only the first element of the arguments is tested against
the cases. This is where the shift statement comes in. This decrements the element indices
of an array by one, so that $argv[1] is lost, $argv[2] becomes $argv[1], $argv[3] becomes
$argv[2] and so on. If we look at the -a case. The arguments are shifted, so that the first
argument is now the value of the semi-major axis. This in turn is shifted out of the arguments.
The * case does the equivalent of the earlier while loop (see Section 7.6) as it appends the NDF
filenames. The [1-] means the first element until the last.

To actually perform the masking we could write an ARD ellipse shape using the variables, and
pipe it into a file, in this case biggal.ard.

echo ’ELLIPSE(’$centre[1]’, ’$centre[2]’, ’$major’, ’$minor’, ’$orient’)’ \

> biggal.ard

On the command line we could enter

% galmask -o 145 -a 78.4 myndf ’ccd*o’

if the script was called galmask. This would set the semi-major axis to 78.4 pixels, the orientation
to 145◦, leaving the semi-minor axis at its default of 44 pixels. It would operate on the NDF
called myndf and those whose names began with ccd and ended with o.

There is a related example in Section 17.1 where the ellipse axis lengths and orientation are
fixed for two galaxies. The above options code could replace that recipe’s first two lines, if we
wanted to alter the spatial parameters for the brighter galaxy to see which gives best results.

In $KAPPA_DIR/multiplot.csh you can find a complete example. For a series of NDFs, this
produces a grid of displayed images with axes and titles, prints them to a nominated device, once
each page is full. You can modify it for other operations, where a single page of graphics output
is produced by running several tasks, and joining them together with PSMERGE (SUN/164).

SC/4.4 51

15 Debugging scripts

Earlier in Section 5 a number of ways to run a script were presented. There is yet another,
which makes debugging easier. If you invoke the script with the csh command you can specify
none or one or more options. The command takes the form

% csh [options] script

where script is the file. There is a choice of two debugging options.

% csh -x myscript

% csh -v myscript

The x option echoes the command lines after variable substitution, and the v option echoes the
command lines before variable substitution. The v is normally used to identify the line at which
the script is failing, and the x option helps to locate errors in variable substitution. As these
options can produce lots of output flashing past your eyes, it is often sensible to redirect the
output to a file to be examined at a comfortable pace.

If you prefer, you can run the script in the normal way by putting the option into the first
comment line.

#!/bin/csh -x

16 Breaking-in

Sometimes you will realise you have made a mistake after starting a script, and therefore want
to stop it to save time or damage. You can break-in using CTRL/C (hitting C while depressing
the CTRL key), but doing this can leave unwanted intermediate files, graphics windows, and
other mess. However, if you have

onintr label

<the main body of the script>

label:

<perform housekeeping>

exit

near the head and tail of your script, whenever CTRL/C is detected, the script will go to the
specified label. There you can close down the script in a controlled fashion, removing the
garbage. If you want to prevent CTRL/C interrupts, you should include the line

% onintr -

instead.

52 SC/4.4

17 Longer recipes

This section brings together a number of the individual ingredients seen earlier into lengthier
scripts. So far there is only one.

17.1 Recipe for masking and background-fitting

The following script fits a surface to the background in a series of NDFs. First two bright galaxies
are to be excluded from the fitting process by being masked using an ARD region (see SUN/95,
“Doing it the ARD way”). It is known that the brighter galaxy is the brightest object in the
field and the relative displacement of the two galaxies is constant.

Loop through the remaining arguments, assuming that these are NDFs.

foreach file ($ndfs[1-])

Obtain the NDF’s name.

set file1=$file:r

Obtain the centre of the galaxy, assuming it is the pixel with the

largest value.

stats $file1 > /dev/null

Store the maximum (centre) co-ordinates values in shell variables.

set centre = ‘parget maxcoord stats‘

Create a two-line ARD file. The first is for the bright galaxy, and

the other is the second brightest galaxy. We assume a constant offset.

Use CALC to evaluate the expressions, as the centres are strings and

might be floating point.

echo ’ELLIPSE(’$centre[1]’, ’$centre[2]’, 82, 44, 152)’ > $file1".ard"

set aa = ‘calc exp=\"$centre[1] + 68\"‘

set bb = ‘calc exp=\"$centre[2] - 59\"‘

echo ’ELLIPSE(’$aa’, ’$bb’, 30, 25, 105)’ >> $file1".ard"

Mask the NDF.

ardmask $file1 $file1".ard" $file1"_masked" cosys=w

\rm $file1.ard

Do the surface fit.

echo " "

echo $file:r

surfit in=$file1"_masked" out=$file1"_bg" estimator=median \

fittype=polynomial nxpar=4 nypar=4 ix=16 iy=16 \

fitclip=\[2,2.5,3\] evaluate=interpolate

Perform the sky subtraction.

sub $file1 $file1"_bg" $file1"_ss"

Remove work files.

\rm $file1"_bg.sdf" $file1"_masked.sdf"

SC/4.4 53

end

exit

parget obtains the x-y co-ordinates of the maximum value in each NDF, and these are stored in
variable centre. Since there are two values, centre is an array. The value of the first element
$centre[1] is the x co-ordinate from stats, and the second $centre[2] is the y co-ordinate.
These values are placed in an ARD expression and output to $file".ard". calc applies the
offset between the galaxies. The second ARD expression is appended to the same text file.
ardmask then masks the galaxies, surfit performs the background fit, and subtracts it from
the original NDF. The intermediate files are removed. The exit command meaning exit the
script is implied at the end of the file, so it can usually be omitted. You might want to call it
to leave the script, when some error is encountered.

If you want to make the shape and orientation arguments of the script, see the example of
UNIX-style options in Section 14.

54 SC/4.4

18 Glossary

• Alias
A mechanism for abbreviating a C-shell command line.

• ARD
ASCII Region Definition. A syntax for specifying various regions of an image in a text
file. Used for masking image data. It is described in SUN/183.

• awk
A pattern-scanning and text-processing language. In other words it is a programmable
report generator. Its name comes from the initials of the authors.

• CONVERT
A Starlink utility package for converting between NDF and various data formats such as
FITS. It is described in SUN/55.

• Current process
The task currently running the shell (in the context of this document). C-shell scripts
invoked from the current process are each run in new (child) processes.

• Environment variable
A global variable to define the characteristics of a UNIX environment such as the terminal
type or home directory. It is defined with the setenv command. By convention, environ-
ment variables appear in uppercase. Environment variables are often used to refer to a
directory or to tune software.

• Figaro
A general astronomical data-reduction package but concentrating on spectroscopy. It is
available in several flavours. The Starlink version is described in SUN/86.

• File modifier
Syntax for specifying a part of a filename. They appear following a filename and have the
form colon followed by a letter. For example, :t excludes the path.

• FITS
Flexible Image Transport System (FITS). The most commonly used format for astronom-
ical data storage. It comprises a series of text headers followed by image or tabular data.

• HDS
Hierarchical Data System. The underlying data system for Starlink data files. It is used
to create and access NDF datasets.

• KAPPA
The Starlink Kernel Application Package. A suite of facilities for processing and viewing
astronomical images. Described in SUN/95.

• Match
A string in a file that is successfully specified by a regular expression. It is also a filename,
shell variable, or alias successfully specified by wildcards within the shell.

SC/4.4 55

• Metacharacter
Characters which have special meanings. For the shell these include wildcards, quotes,
and logical operators. In regular expressions, metacharacters are used to specify strings
to match.

• NDF
The standard Starlink data-storage format. An hierarchical format for multi-dimensional
data storage. Accessed using libraries supported by Starlink. Use of NDF is described in
SUN/33.

• NDF Section
A subset or superset of a dataset (originally applied to just NDFs) defined by specifying
the pixel bounds or co-ordinate limits along each axis following the dataset’s name. See
SUN/95’s chapter called “NDF Sections” for a description and many examples.

• Output parameters
A channel through which some Starlink applications write their results. These tend to be
applications that do not create an output dataset, such as statistics and dataset attributes.
They are sometimes called “Results parameters”. For examples see Section 9.

• Path
A list of directories which the system searches in turn to resolve command requests.

• Pipe, piping
Mechanism by which the standard output of one programme is passed to the standard
input of another. It allows sophisticated tools to be made from simple commands. The |

character represents the pipe.

• Process
A task being performed by the computer.

• Process identification number
A positive integer that uniquely identifies a process within the system.

• Regular expression
A pattern of characters used to match against the same characters in a search. They
usually include special characters, which represent things other than themselves, to refine
the search. Regular expressions empower utilities like grep, sed and awk. Although
similar to shell wildcards there are differences, so be careful.

• sed
The stream editor. It is useful for editing large files or applying the same edits to a series
of files.

• Shell
A programme that listens to your terminal, and accepts and interprets the commands you
type. There are several UNIX shells including the Bourne (sh), Bourne-again (bash), Korn
(ksh), as well as the C shell (csh).

• Shell variable
An identifier that can store one or more strings. Variables enable string processing, and
integer and logical expressions in the shell. See Section 7 for more details.

56 SC/4.4

• Standard input
The file from which most UNIX programmes read their input data. It defaults to the
terminal if you do not supply the input on the command line or a file.

• Standard output
File to which most UNIX programmes output their results. Text output from Starlink
applications are also routed there. Standard output defaults to your terminal. It can be
piped into commands that accept standard input.

• Starlink
UK network of computers for astronomers; a collection of software to reduce and analyse
astronomical data; and the team of people supporting this hardware and software.

• Wildcards
A shorthand notation to specify filenames, aliases or shell variables by supplying a certain
special characters that represent things other than themselves.

Wildcard expression Matches

* Zero or more characters
? Exactly one character
[xyz] One character in the set x, y, or z
[a-m] One character in the range from a to m

[A-Za-z] All alphabetic characters
[0-9] All numeric characters
{alpha,beta,a,b} A set of options, alpha, beta, a, or b
{aa,bb[1-3]} aa, bb1, bb2, or bb3

